Exercise 1

Solve the differential equation.

$$
4 y^{\prime \prime}-y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
4\left(r^{2} e^{r x}\right)-e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
4 r^{2}-1=0
$$

Solve for r.

$$
\begin{gathered}
(2 r+1)(2 r-1)=0 \\
r=\left\{-\frac{1}{2}, \frac{1}{2}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-x / 2}$ and $e^{x / 2}$. According to the principle of superposition, the general solution to the ODE is a linear combination of these two.

$$
y(x)=C_{1} e^{-x / 2}+C_{2} e^{x / 2}
$$

